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Abstract

Some studies have indicated that a specific “social semantic network™ represents the
social meanings of words. However, studies of the comprehension of complex
materials, such as sentences and narratives, have indicated that the same network
supports the online accumulation of connected semantic information. In this study, we
examined the hypothesis that this network does not simply represent the social
meanings of words but also accumulates connected social meanings from texts. We
defined the social semantic network by conducting a meta-analysis of previous studies
on social semantic processing and then examined the effects of social semdntic
accumulation using an fMRI experiment. Two important findings were obtained. First,
the social semantic network showed a stronger social semantic effect in senténce and
narrative reading than in word list reading, indicating the amplitude of,s0cial semantic
activation can be accumulated in the network. Second, the activationfof the social
semantic network in sentence and narrative reading can be better explained by the
holistic social-semantic-richness rating scores of the stimuli*tham.by those of the
constitutive words, indicating the social semantic contents*€an be integrated in the
network. These two findings convergently indicate that theysocial semantic network
supports the accumulation of connected social meanings.

Keywords: social semantic processing, sentence gnarrative, language comprehension,
fMRI
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Introduction

An important finding of cognitive neuroscience is that the brain network
supporting semantic representation is partially organized according to information
types (Binder et al, 2016; Mahon and Caramazza, 2009; Martin, 2007).
Sensory-motor semantic information and social semantic information are the most
salient information types that constrain the organization of the semantic system in
brain, which are supported by two separate semantic subsystems (Huth et al., 2016;
Lin et al., 2018a). The semantic subsystem that selectively supports social semantic
representation is referred to as the social semantic network, which include$ the
bilateral anterior temporal lobes (ATL), temporoparietal junction (TPJ)/angulag’gyrus
(AG), dorsomedial prefrontal cortex (DMPFC), and posterior cifigulate, gyrus
(PC)/precuneus (Lin et al., 2018a; Lin et al., 2020). They show_stwehg activation
during the processing of words with rich social meanings (Lin ef al., 2015; Lin et al.,
2018a; Wang et al., 2019), and their activities can be us€d” towde€ode the social
semantic contents being processed (Huth et al., 2016; Therntén & Mitchell, 2018). It
was proposed that these areas represent the social conegpts underlying word meanings,
which is a part of semantic memory (Binder et al., 201¢; Tanfet al., 2019).

The neuroimaging studies on the comprehension of complex materials, such as
sentences and narratives, however, have indicat@dythat the brain areas of the social
sematic network may support the onling, accumulation of connected semantic
information. The effect of semantic“@Geumulation on brain activation has been
primarily revealed by studies thatamanipulated the size of the semantically continuous
structures embedded in the stimuli. Injan early study, Xu et al. (2005) compared the
brain activations evoked by'thesmartatives, unconnected sentences, and word lists in a
reading task and found thatythé ATL showed stronger activation to unconnected
sentences than to wed-lists, and the DMPFC, precuneus, and TPJ showed stronger
activation to narfatives than to unconnected sentences. Lerner et al. (2011) used a
design similarto Xu'et al. (2005) in a listening task, but focused on the intersubject
correlation(ISC) of the BOLD response time courses instead of the strength of brain
activity. They also found the effects of linguistic hierarchies in several brain areas: in
the posteriof superior temporal gyrus, a significant ISC was observed when listening
to semtences, paragraphs, and stories but not word-lists; in the TPJ and precuneus, a
significant ISC was observed when listening to paragraphs and stories, but not to
sentences or word lists; and in the medial prefrontal cortex, a significant ISC was
observed only when listening to complete stories. Pallier et al. (2011) demonstrated a
more fine-grained semantic accumulation effect by continuously manipulating the size
of sentential constituents (1 word, 2 words, 3 words, 4 words, 6 words, and 12 words)
embedded in a stream comprising 12 written words. They found that the activation of
the ATL and TPJ increased parametrically with the constituent size in both amplitude
and phase. Importantly, the constituent-size effect in the ATL and TPJ disappeared
when the content words were replaced with pseudowords of the same morphological
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endings, indicating that the effect reflected semantic rather than syntactic
accumulation. Mellem et al. (2016) replicated the finding of Pallier et al. (2011) and
found an overlap between the constituent-size effect and the effect of social-emotional
semantic processing in the left ATL. In addition to linguistic hierarchy and constituent
size, the brain areas associated with semantic accumulation are also sensitive to
factors that influence the holistic comprehension of stimuli, such as the powerfulness
of a political speech (Schmilzle et al., 2015) and subtle word changes that alter the
interpretation of a story (Yeshurun et al., 2017).

In the two aforementioned lines of studies, the two features of the sécial
semantic network, i.e., being sensitive to social semantic information and being
sensitive to connected semantic information, were attributed to social “eéncept
representation and domain-general semantic accumulation, respectively. Here we
propose that these two features may both be associated with a_simgle Cognitive
function, i.e., the accumulation of connected social semantic ihformation. We will
refer to this function as social semantic accumulation for/SHortaWe assume that,
during text comprehension, social semantic accumulation starts by representing the
social meanings of the initial word and then accumulates and integrates the connected
social meanings from the following texts. This hypothesissean explain the findings of
both aforementioned lines of studies: Because secial*semantic accumulation starts
with representing the social meanings of words, Jit,can explain the sensitivity of the
network to social semantic information in‘wotd comprehension tasks; because the
previous studies of semantic accumulatien) typically used stimuli containing rich
social semantic information, the existing evidence for semantic accumulation can also
be viewed as evidence for socialisemantic accumulation.

In this study, we exafhined tWo novel predictions of our hypothesis of social
semantic accumulationgfirst,singthe social semantic network, the amplitude of social
semantic activationmaccumulates along with the processing of connected social
meanings, exhibiting Jinguistic hierarchical differences (narrative > sentence > word);
second, during text comprehension, the activation of the social semantic network can
be bettergexplained by the holistic social meanings of the stimulus than by the
word-level soclal meanings. The confirmation of these predictions would indicate that
the Social, s€émantic processing occurring in the social semantic network during text
compiehension is not simply the retrieval of the social meanings of words, but rather
inyolves social semantic accumulation.

Methods
Participants

In total, 36 healthy undergraduate and graduate students (22 females) participated
in the fMRI experiment. The mean age of the participants was 21.2 years (SD = 2.5
years). All participants were right-handed and native Chinese speakers. None of the
participants had suffered from psychiatric or neurological disorders or had ever
sustained a head injury. All protocols and procedures were approved by the
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Institutional Review Board of the Magnetic Resonance Imaging Research Center of the
Institute of Psychology of the Chinese Academy of Sciences, and each participant read
and signed an informed consent form before the experiment. In the data analysis, the
data of three subjects (two females) were discarded due to excessive head movement
(>3.0 mm or 3.0 degrees in any direction). Thus, the data analyses were based on the
remaining 33 participants.

Design and Materials

In the fMRI experiment, we manipulated the social semantic richness (high/low)
and linguistic hierarchies (word/sentence/narrative) of the stimuli. Therefores the
experiment  contained six conditions, namely, the high and ) low
social-semantic-richness word-list conditions, sentence conditions, and nafrative
conditions.

Both high- and low social-semantic-richness narrative conditions¢contained 42
narratives, with each narrative consisting of four sentences. W¢ obtained the social
semantic richness scores of these materials at the narrative,g§chteneesand word level
using three rating experiments (see Supplementary Materialsfor details). We carefully
matched a series of variables between the high- and low%social-semantic-richness
narratives, which include the sentence-level and narrativeslével semantic plausibility,
the coherence of narratives, the number of words“per natrative and per sentence, the
number of characters per narrative, per sentence, and,per word, and the word frequency
(Table 1). The high- and low social-semanticsrichness narrative stimuli were both
randomized into three sets, with each set'of stimuli containing 14 narratives. For each
set of narrative stimuli, corresponding sets of sentence stimuli and word-list stimuli
were constructed. Therefore, both thethigh- and low social-semantic-richness stimuli
were separated into three sé€ts,gwithw€ach set having three versions, i.e., the narrative
version (14 narratives)4 the ‘sentence version (14 sentence lists), and the word-list
version (14 groups ofiwordilists). In the fMRI experiment, only one version of each set
of stimuli was presefited to a participant, which corresponded to one of the six
experimentalgonditions. The uses of the three different versions of the three sets of
stimuli werercountetbalanced across participants. In the Supplementary Materials, we
detailed how the social semantic richness and control variables of the stimuli were
mamipulated®and controlled and how the sentence and word-list stimuli were
constgucted based on the narrative stimuli.

Procedures

The fMRI experiment employed a block design, containing three runs of 10
minutes and 26 seconds each. Each run included 28 blocks, with four or five blocks for
each condition. In total, each condition includes 14 blocks in the experiment. The
numbers and orders of the blocks for the six conditions were counterbalanced across
runs and participants. In the first 10 seconds of each run, participants were shown a
fixation. They then performed a silent reading task in which they were shown a
narrative, a sentence list (four unconnected sentences), or a group of word lists (four
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word-lists) in each block. In each block, each sentence or word list appeared for 3
seconds. Each block lasted for 12 seconds, followed by a 10-second fixation.

To make sure the participants could pay attention to the stimuli during the
scanning, they were told to complete a recognition test to evaluate their performance
after scanning. The stimuli of the recognition test included all stimuli that the
participants had seen in the scanner and an equal number of stimuli that were never
used in the fMRI experiment. All stimuli were presented in blocks as in the fMRI
experiment, except that the fixation between blocks was shortened to 0.5 s. Participants
were asked to indicate whether they believed the block of stimuli they saw hadgbeen
presented in the fMRI experiment by pressing buttons.

Image Acquisition and Preprocessing

Structural and functional data were collected using a GE DiscovefyMR¥50 3 T
scanner at the Magnetic Resonance Imaging Research Center of thé Institute of
Psychology of the Chinese Academy of Sciences. T1-weighted structural Tmages were
obtained using a spoiled gradient-recalled pulse sequence uf"176%agittal slices with
1.0-mm isotropic voxels. Functional blood-oxygenationslevel-dgpendent data were
collected using a gradient-echo echo-planar imaging sequenge in 42 near-axial slices
with 3.0-mm isotropic voxels (matrix size = 64 x 64;%epetition time = 2000 ms; echo
time = 30 ms).

The fMRI data were preprocessed using Statistical Parametric Mapping software
(SPMS; http://www.fil.ion.ucl.ac.uk/spm/).\Faer the preprocessing of the task fMRI data,
the first five volumes of each functional'timawere discarded to reach signal equilibrium.
Slice timing and 3-D head motiemy,correetion were performed. After that, a mean
functional image was obtained for each participant, and the structural image of each
participant was coregistered tosthe tean functional image. Then, the structural image
was segmented using th€ unified’segmentation module (Ashburner & Friston, 2005).
The parameters obtained during segmentation were used to normalize the functional
images of each participant into the Montreal Neurological Institute space. Functional
images were gubsequently spatially smoothed using a 6-mm full-width-half-maximum
Gaussian kerncl;

Data analysis
Defining the social semantic network: a meta-analysis

We _c¢onducted an ALE meta-analysis to define the social semantic network. A
literdture search was conducted on the Web of Knowledge (www.isiknowledge.com).
The inclusion criteria are detailed in the Supplementary Materials. In total, we collected
95 activity peaks from the 10 included studies (Table 2). We then conducted ALE
meta-analysis based on these data using GingerALE 3.0.2 (Eickhoff et al., 2009). The
coordinates reported in the Talairach space were transformed into the MNI space using
the Convert Foci function of the GingerALE. The results of this ALE meta-analysis
then served as the regions of interests (ROIs) of our data analysis.

One limitation of our ALE meta-analysis is that it included only a small number of
studies. To verify the results of the ALE meta-analysis, we conducted a supplementary
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meta-analysis using Neurosynth (neurosynth.org; Yarkoni, et al., 2011), which is based
on a much larger data set. First, we conducted two separate Neurosynth meta-analyses
using the terms “social” and “semantic” (using the default settings of the Neurosynth:
association test; false discovery rate criterion of .01). These two terms yielded 1302 and
1031 studies (47083 and 40030 activations), respectively. We then computed the
overlap of the brain maps from the two results and using this overlap to reflect the
distribution of the social semantic network. This overlapping analysis was based on two
assumptions. First, the social semantic network should be activated in most social tasks
because accessing social semantic knowledge is a fundamental component of sé¢ial
cognition. Second, the social semantic network should be activated in a congidegable
proportion of semantic studies because social knowledge is a basic and breadytype of
semantic information. However, this second assumption suffers fromy@ tiskithat the
dataset of semantic studies may possibly have a bias towards focusing 6n some
nonsocial types of knowledge, such as object knowledge. Therefore, this*overlapping
analysis is not guaranteed to fully reveal the distributions™6f thesSocial semantic
network and was only used as a supplementary method.

Modelling the effects of social semantic accumulation

Statistical analyses of the fMRI data were perform€d according to 2-level,
mixed-effects models implemented in SPMS, focusing on two predictions. First, in the
social semantic network, the amplitude of secialysémantic activation accumulates
along with the processing of connectedWsogial meanings, exhibiting linguistic
hierarchical differences (narrative > ‘sentence > word). Second, during text
comprehension, the activation of the, social semantic network can be better explained
by the holistic social meaningstof the stimulus than by the simple additivity of the
word-level social meanings{ These tWwo predictions were examined using two different
modelling methods.

The first predietion Was examined using the classic contrast-based modelling
analysis. In this ahalysis, we modelled the social semantic activation as the additional
activation evekedsby the high social-semantic-richness stimuli over that evoked by the
low socialssemanti¢-richness stimuli. The social semantic accumulation effect was
reflected|, by the additional social semantic activation in sentence and narrative
conditions Over that in the word-list conditions and additional social semantic
activation’ in the narrative conditions over that in the sentence conditions. The
undetlying logic of this method is derived from the previous studies using the same or
stilar paradigm to study the domain-general semantic accumulation effect, in which
the effect of semantic accumulation was modelled as the additional activation evoked
by sentences over word-lists and by narratives over sentences (Mellem et al., 2016;
Pallier et al., 2011; Xu et al., 2005).

Specifically, at the first level, a general linear model was built by including the six
conditions as covariates of interest. Each block of stimuli was modeled with a boxcar
waveform lasting 12 s. Six head motion parameters obtained by the head motion
correction were included as nuisance regressors. A high-pass filter (128 s) was used to
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remove low-frequency signal drift. The results of the first level analysis were then
entered into the second-level random-effects analysis. We primarily focused on the data
within the ROIs. For each participant and condition, the voxel-based beta values
obtained in the first-level analysis were averaged within each ROI. The social semantic
activations in word, sentence, and narrative reading were then modelled as the beta
differences between the high and low social-semantic-richness conditions at each
hierarchy. We examined the social semantic activations in word, sentence, and
narrative reading using a one-sample t-test against zero and examined the social
semantic accumulation effect by comparing the social semantic activations in the wotd,
sentence, and narrative conditions using paired t-test.

The second prediction was examined using the parametric modulatiomapproach
implemented in SPMS. At the first level, we merged the high- and
low-social-semantic-richness conditions at each linguistic hierarchy_ inted single
condition. To better capture the continuous changes of the social §emangic*richness
within each block, we modelled the BOLD response to the stiffitili ‘aecording to the
presence of each sentence and word list. For each condition, the présence of each
sentence or word list was modelled using a constant regressorjlasting 3 s, and the social
semantic effects were modelled as the interactions betweensthe presence of a
sentence/word list and a number of parametric social-seémantic-richness modulators
associated with it. The number of parametric s@cialssemantic-richness modulators
varied across conditions. For the narrative ¢ondition, three parametric
social-semantic-richness modulators wegeset, which are computed based on the
narrative-, sentence-, and word-levelsocial*semantic-richness scores obtained in the
aforementioned rating experiménts. The narrative-level social-semantic-richness
modulators of the four sentgnces of'@ narrative were all set using the narrative-level
social-semantic-richness{rating s¢ore of the narrative. The sentence-level
social-semantic-richness medulator of each sentence was set using its sentence-level
social-semantic-riehness rating score. The word-level social-semantic-richness
modulator of.€achysentence was set as the average word-level social-semantic-richness
rating scorerot all it§ constitutive words. For the sentence condition, only the sentence-
and word-level'social-semantic-richness modulators were set. For the word-list
condition, Ofily the word-level social-semantic-richness modulator was set.

We then analysed the social semantic effects using two models: in Model 1, the
high¥level social-semantic-richness modulators were orthogonalized with respect to the
low-level ones so that the shared variability of the regressors was assigned to the
low-level social-semantic-richness modulators; in Model 2, the low-level
social-semantic-richness modulators were orthogonalized with respect to the high-level
ones so that the shared variability of the regressors was assigned to the high-level
social-semantic-richness modulators. For both models, the modulation effect of each
parametric modulator was examined using a one-sample t-test against zero in the
second-level analysis. The results of the two models indicate whether the high and low
levels of social-semantic-richness modulators can explain additional variability of the
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activation over each other (see Supplementary Materials for more details of this
analysis).

One possible problem of the parametric modulation analysis is that the social
semantic richness of words varies systematically across grammatical categories so that
when processing the social meaning of words, people may selectively focus on
particular grammatical categories and ignore others. In this case, averaging the
social-semantic-richness scores of all constitutive words of a sentence may dilute the
effect of word-level social semantic richness. In literature, the word-level social
semantic effect has been observed in three grammatical categories of words, whigh
include adjectives (Mitchell et al., 2002; Zahn et al., 2007), verbs (Lin et alf, 2015;
2018a), and nouns (Lin et al., 2019; Wang et al., 2019). Therefore, we epnducted a
second parametric modulation analysis in which we only #ingluded” the
social-semantic-richness scores of these three categories of words in thetedmptitation of
the word-level social-semantic-richness modulator, and ignored the otherwords. The
classification of the grammatical categories of words waS *mainly” based on the
Language Corpus System of Modern Chinese Studies (Sun €t al.//[1997). For the 159
low-frequency words that were not included in the cerpus,‘three authors (Guangyao
Zhang, Meimei Zhang, and Nan Lin) together decided‘thcimgrammatical categories. In
total, the social-semantic-richness scores of 819%f the original 962 non-repetitive
words were included in the analysis.

In addition to the ROI-based analyses, Wwe ‘also conducted whole-brain activation
analysis. The major aim of the whole-bidin analysis was to enable us to compare the
social semantic effect and the semtence and narrative effects observed in the present
study with those observedW in previous studies. We also conducted a
psychophysiological interdction (PPI) analysis to explore the task-modulated
connectivity between thic arcas 61 the social semantic network. The methods of the
whole-brain activatien analysis and the PPI analysis are detailed in the Supplementary
Materials.

All brainfmaps ofour results were visualized using the BrainNet Viewer software
(Xia et alg2013).

Results
Behayioural results of the post-scan recognition test

The participants showed considerable recognition accuracy in the post-scan
récognition test (narratives: 81.8%; sentences: 78.5%; words: 66.2%), indicating that
they had paid attention to the reading task. The accuracy data showed a strong linguistic
hierarchical effect: the differences between each two of the three linguistic hierarchies
were all significant, with the narrative stimuli being recognized best and the word
stimuli being recognized worst (narrative vs. sentence: #[32] = 2.367, p = 0.024;
sentence vs. word: #[32] = 7.885, p <.001; narrative vs. word: /32] = 7.633, p <.001).
Because we did not manipulate the social-semantic-richness of the unfamiliar stimuli,
the analysis of the social semantic effect was conducted within the familiar trials. A
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significant difference between high- and low social-semantic-richness conditions was
found in the narrative recognition (high social-semantic-richness vs. low
social-semantic-richness: 85.9% vs. 80.7%, #[32] = 2.512, p = 0.017), but not in
sentence or word recognition (zs < 1). The reaction time (RT) data showed no
significant difference in any analysis.
fMRI results
The results of the meta-analysis for defining the ROIs of the social semantic
network

As shown in Figure 1 and Table 3, the ALE meta-analysis revealed six significant
clusters (thresholded at whole-brain cluster-level permutation corrected pg<10.05,
voxel-wise p <0.001). The clusters were located at the bilateral ATL, TPJ,£Chand the
left DMPFC. These clusters were defined as the ROIs for the fMRI data"analysis.” The
overlapping of the Neurosynth results of the social and semantic_networks tevealed
surprisingly similar results, despite using highly different datasetsfand methods: Five of
the six regions (the bilateral ATLs, left TPJ, left SFC, and PC) rewealed by the ALE
analysis were also revealed by the Neurosynth overlappimg*@nalysis, confirming the
reliability of the ROIs and indicating that the social semanticynetwork is located at the
junction of the semantic and social networks, serving as a‘eefmponent of both of them.
The social semantic accumulation effect as reflected by the contrast-based analysis
of the ROI data

The results of the contrast-based analysisyare shown in Figure 2, Table 4 and Table
5. In sentence and narrative rcadimgy ‘social semantic activations (high
social-semantic-richness > low gseegial-semantic-richness) were found in all ROls,
whereas in word-list reading, soeial semantic activation was found only in the bilateral
ATL and the left DMPFC¢The® soéial semantic activations in sentence reading were
stronger than in word-list readifg in all ROIs except the right TPJ, and the social
semantic activationgsin narsative reading were stronger than those in word-list reading
in all ROIs exceptithedeft DMPFC. These findings indicate that in the social semantic
network, the @mplitude of the social semantic effect accumulates along with sentence
processing=NO\RQ1Is showed a significant difference between the social semantic
activatiofls in sentence reading and those in narrative reading. Therefore, the results of
the (Contrast®based analysis provide no evidence that the social semantic network
supperts.the narrative-level social semantic accumulation.
The Social semantic accumulation effect as reflected by the parametric modulation
analysis of the ROI data

The parametric modeling analysis showed that, in sentence and narrative reading,
the social-semantic-richness modulator at the holistic level performed better than at the
constitutive levels in explaining the activation of the social semantic network. The
results of the parametric modeling analysis that considered all words in calculating the
word-level social-semantic-richness modulator are summarized in Table 6. In word-list
reading, the word-level social-semantic-richness modulators explained the activation of
four ROIs, which included the bilateral ATL, the left TPJ, and the left DMPFC. In
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sentence reading, both word-level and sentence-level social-semantic-richness
modulators alone explained the activation of all ROIs. The sentence-level
social-semantic-richness modulator explained the activation of all ROIs, even after
being orthogonalized with respect to the word-level social-semantic-richness
modulator (Model 1), whereas the word-level social-semantic-richness modulator no
longer explained the activation of any ROI after being orthogonalized with respect to
the sentence-level social-semantic-richness modulator (Model 2). Similarly, in
narrative reading, both word-level and narrative-level social-semantic-richness
modulators alone explained the activation of all ROIs. The narrativedevel
social-semantic-richness modulator explained the activation of three ROIs (thebilateral
TPJ and the right ATL), even after being orthogonalized with respect to theyword-level
and sentence-level social-semantic-richness modulators (Model 49,) while” the
word-level social-semantic-richness modulator no longer explained thefactiVation of
any ROI after being orthogonalized with respect to the [ narrative-level and
sentence-level social-semantic-richness modulators (Model 2)7Th addition, in narrative
reading, the sentence-level social-semantic-richness modudatofexplained the activation
of four ROIs (the bilateral ATL, the left TPJ, andgthe left DMPFC) after being
orthogonalized with respect to the word-level social-Semfantic-richness modulator
(Model 1), but no longer explained the activation oflany ROI after being orthogonalized
with respect to the narrative-level social-semanti¢ssichness modulator (Model 2). The
results of the parametric modeling analysishthat only considered nouns, verbs, and
adjectives in calculating the word-level'segial-semantic-richness modulator are very
similar to those of the first parametric modeling analysis, which are shown in Table 7.
The results of the whole-brain activation analysis

The results of thegdwhele-bfain activation analysis are detailed in the
Supplementary Materials. Te, bfiefly summarize, the results largely replicate the
social-semantic-richness ahd linguistic hierarchical effects reported in the literature
(see Table S1, Table 83, Figure S1, and Figure S3) and indicate that these two effects
interact withgeach other. The social-semantic-richness effect in the sentence and
narrative gonditions’was observed in all areas of the social semantic network; whereas
the social-semantic-richness effect in word-list conditions was only observed in the
left/ATL (T@ble S2 and Figure S2). The sentential effect (sentence > word-list) in the
high%social-semantic-richness conditions was observed in most classic areas of the
senténce processing network (Fedorenko et al., 2010; Labache et al., 2019); whereas
the sentential effect in the low social-semantic-richness conditions was observed in
very few brain areas (Table S4 and Figure S4). The statistical comparisons of the
social-semantic-richness effects across different linguistic hierarchies revealed a
significant cluster in the right precuneus, where the social semantic activation was
stronger in the sentence conditions than in the word-list conditions (see Figure S5 and
Table S5).
The results of the PPI analysis
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The PPI analysis did not reveal any significant social-semantic-richness effect or
interaction between social semantic richness and linguistic hierarchy (see Figure S6
and Table S6), possibly due to that the functional coupling in the social semantic
network is modulated not only by social semantic processes but also by the intrinsic
functional antagonism between the default mode network and the multiple demand
network. The results are reported and discussed in the Supplementary Materials.

Discussion

We investigated the effects of social semantic accumulation using an fMRI
experiment in which the social semantic richness and linguistic hierarchies of’stimuli
were both manipulated. The social semantic network showed two aspects 0ffsocial
semantic accumulation effects. In the contrast-based analysis, the g6cial ‘Semantic
network showed stronger social semantic activations in sentence and nagfative reading
than in word-list reading, indicating that the amplitude of social semantic activation
accumulates along with sentence processing. In the parametric'modeling analysis, the
activation of the social semantic network in sentence and narrative reading can be better
explained by the holistic social-semantic-richness rating scotes of the stimuli than by
the social-semantic-richness rating scores of the constitutive words, regardless of
whether all words or only nouns, verbs, and adjectiyes Were considered, indicating the
social semantic contents can be integrated \in¥the” network. These two findings
convergently indicate that the social semantic network is involved in social semantic
accumulation during language comprehension.

Our findings provide new insights into'the function of the social semantic network.
Most previous studies of social'semantic processing focused on the representation of
social concepts underlying gvord meanings (Lin et al., 2015; 2018a; 2019; Wang et al.,
2019; Zahn et al., 2007). Some studies have emphasized the role of the ATL in social
concept representation (Wang et al., 2017; Zahn et al., 2007). The present study
provided the first‘@yidence that all areas of the social semantic network, including the
ATL, were mvolvedyin not only social concept representation, but also in social
semantic aeeumulation. This important function of the social semantic network should
be considered jin future studies, especially those investigating the social semantic
progessing 0f complex materials, such as sentences, narratives, and movies.

Qur findings also shed new light on how semantic accumulation may occur in the
brat» In previous studies, the effect of semantic accumulation has only been
associated with the size and processing time-scale of the semantically connected units
(Lerner et al., 2011; Pallier et al,, 2011). Our finding indicates that the type of
semantic information being processed also modulates the effect of semantic
accumulation on brain activation. Therefore, future studies on semantic accumulation
should consider not only the domain-general factors influencing semantic
accumulation, but also the types of semantic contents being processed.

One advantage of the current study is that the use of the parametric modulation
analysis has compensated for the shortness of the traditional methods for analyzing
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the semantic accumulation effect. Comparing sentence processing with word-list
processing is a frequently-used paradigm to reflect the neural correlates of semantic
accumulation (Humphries et al., 2006; Lerner et al., 2011; Xu et al., 2005). However,
one may argue that the difference between sentence and word-list processing is
confounded by the effect of processing depth (Craik & Lockhart, 1972): word-list
processing is a relatively shallow type of processing, in which people may tend to
encode the orthographical and phonological information of stimuli; in contrast,
sentence processing enables the chunking of meanings, making semantic encoding
dominant. Similarly, the effects of the constituent size (Mellem et al., 2016; Palli€ret
al., 2011) on the brain activation properties (locations, amplitudes, and phasés)ymay
also be explained by processing depth due to the fact that the processing depth’could
parametrically vary along with the constituent size. The parametric ymodulation
analysis used in the present study overcomes this problem by_foeu§ing“only on
sentence and narrative processing and using the regression approach te dissociate the
sentence- and narrative-level of social semantic effect froM*théwwoérd-level social
semantic effect. This approach has revealed a new aspeet of semantic accumulation
effect that cannot be confounded by processing depth.

An important question that remains to be explored, iSwhether the social semantic
accumulation in the social semantic network occuts only at the sentence level or also
at the narrative level. The results of the contrastsbased analysis did not reveal any
evidence for the narrative-level social semantic accumulation effect. However, it
should be noted that the main effect ‘of*matrative processing (narrative > sentence)
observed in our whole-brain analysis (sc¢e the Supplimentary Marterials) was also
much weaker than that reportéd, by the previous studies of narrative-level semantic
accumulation (e.g. Xu et alg 2005)NThis is possibly due to the fact that we used much
shorter narratives than,did the pfevious studies, aiming to better match the lingustic
variables between the highyand low social-semantic-richness materials. On the other
hand, the results“ef Our parametric modeling analysis did reveal a narrative-level
effect in thegbilateral TPJ (see Table 6 and Table 7), where the narrative-level
social-semantic-=richness modulator showed modulation effects on brain activation,
even after |being orthogonalized with respect to the sentence-level
social-semafitic-richness modulator. This finding is consistent with the previous
obsetyations that the bilateral TPJ are involved in narrative-level social semantic
processes. Lin et al. (2018b) compared the brain activation in the beginning and
ending sentences of social and nonsocial narratives and found an interaction between
the narrative topic (social/nonsocial) and narrative processing period
(ending/beginning): during the reading of social narratives, the ending sentence
evoked much stronger activation than the beginning sentence in the bilateral TPJ and
middle temporal gyrus; however, during the reading of nonsocial narratives, such an
effect was either not significant or much smaller. Kaplan et al. (2017) found that the
bilateral TPJ, posterior medial cortices, and medial prefrontal cortex the showed
stronger activation to narratives containing protected values (core personal, national,
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or religious values that are non-negotiable) than to control narratives, and the effect
was most pronounced during the ending segment of the narrative. Therefore, the
findings of our parametric modeling analysis provided a new and convergent piece of
evidence that the bilateral TPJ may support narrative-level social semantic processing.

Another important question that should be investigated in future is how nonsocial
semantic information, such as sensory-motor semantic information, is accumulated in
language comprehension. The brain areas that integrate sensory-motor semantic
information are mainly distributed in the parahippocampal gyrus, retrosplenial cortex,
and temporal-parietal-occipital junction (Fernandino et al, 2016; Lin et al., 204'8a).
Although these areas were seldom reported in previous studies of sentedCe) and
discourse comprehension (Walenski et al., 2019; Yang et al., 2019), a recent’ study
have reported their selective activation in reading vivid passages (Tamit &t aly, 2016).
In addition, these areas are also known to support scene construction/(HaSsabis &
Maguire, 2009). Therefore, future studies may examine whetherfand how these areas
accumulate sensory semantic information using texts that degéribestseenes or images.
Conclusion

We found that the social semantic network shewed ‘$tronger social semantic
activation in sentence and narrative reading than imwesd-list reading, and during
sentence and narrative reading, the social semanticynetwork showed higher sensitivity
to the holistic social semantic richness of the Jstimuli than to the social semantic
richness of the constitutive words. These twe findings convergently indicate that the
social semantic network is involved in sgeial\semantic accumulation during langauge
comprehension.
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Figures.

Figure 1. Results of the ALE meta-analysis and the overlapping analysis. Panel A: the
result of the ALE meta-analysis of 10 fMRI studies of social concept processing. Panel
B: the overlap of the results of the Neurosynth meta-analyses using the terms “social”
and “semantic”.

A. Results of the ALE meta-analysis

B. Results of the overlapping analysis

0 0.02 EO
Extrema Value

Figure 21ROl tesults of the contrast-based analysis. The brain map shows the locations
of the ROIs*The bar plot shows the social semantic effect at the three linguistic
ies for each ROI; error bars represent the standard errors. Condition Labels:
High Social-semantic-richness Narrative; LSN = Low Social-semantic-richness
rrative; HSS = High Social-semantic-richness Sentence; LSS = Low
Social-semantic-richness Sentence; HSW = High Social-semantic-richness Word;
LSW = Low Social-semantic-richness Word.
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Tables.

Table 1. Variables that were manipulated or controlled in the high- and low
social-semantic-richness narrative stimuli. Note that the word-level
social-semantic-richness values of the high- and low social-semantic-richness
narratives shown in the table are the average social-semantic-richness rating scores of
all constitutive words of the two types of narratives. Although both types of narratives
contain a considerable proportion of low social-semantic-richness words (e.g., function
words), the high social-semantic-richness narratives contain a much larger propostion
of high social-semantic-richness words (social-semantic-richness rating score 2S)than
do the low social-semantic-richness narratives (proportion of high
social-semantic-richness words: high social-semantic-richness narratives: 22641206
(18.74%); low social-semantic-richness narratives: 2/1209 (0.17%)).

High Low High
social-semantic-richness social-semantic-richness social-semantic-ri
narratives narratives chness vs. Low

social-semantic-ri

chness
t P
Narrative-level variables
Social-semantic-richness ~ 5.75+0.51 1.42+0.37 44.482 0.000
Coherence 6.68+0.27 6.71+£0.25 0.393 0.695
Semantic plausibility 6.4+0.27 6.4+0.39 0.061 0.952
Number of sentences per  4+0 4+0 - -
narrative
Number of words per 28. 71192 28.79+1.26 0.267 0.790
narrative
Number of charactersipen 48.43+1.7 48.31£1.49 0.342 0.734
narrative
Sentence-ley€l variables
Social-semanticichness ~ 4.79+0.99 1.39+0.33 42.252 0.000
Seémanticgplausibility 6.78+0.2 6.77+0.42 0.311 0.756
Numbeig6t words per 7.18+0.93 7.19+£0.94 0.058 0.953
sentence
Number of characters per  12.11£1.15 12.08+1.13 0.239 0.811
sentence
Word-level variables
Social-semantic-richness ~ 2.97+1.69 1.69+0.7 48.166 0.000
Number of characters per  1.69+0.52 1.68+0.55 0.383 0.702
word
Log (word frequency + 1)  1.82+1.33 1.83+1.37 0.145 0.885
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Table 2. Studies and peak coordinates included in the ALE meta-analysis.

Study Subject Number Task Contrast MNI Coogdinat
X y§ z
Binney et al. (2016) 19 semantic relatedness judgment social > animal 48 98 3
57 95 -
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@
15 8% -
8
3 8% -6
3
33 9L S
C
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o
27 18 2
Q
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social > nonhuman 15

Lin et al. (2018a) 19 semantic relatedness judgment high social-semantic-richness verb > low -42
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45
\ 51
Lin et al. (2019) 20 semantic relatedness judgment high social-semantic-richness noun > -57
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Ross and Olson (2010) 15

Wang et al. (2019) 22

Zahn et al. (2007) 26

semantic relatedness judgment social > animal
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Note: The coordinates reported in
space using the Convert Foci

he Talairach space were transformed into the MNI
of the GingerALE.
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Table 3. Results of the ALE meta-analysis.

Volu
Clust me n Maximum .
or (mm ALE gre t AEE V;llue Anatomical Label
3)
X y z X y z
1 1600 0.018 -56.3 -2.8 -20.2  -56 -4 -24 LATL
2 1088 0.019 -84 555 335 -8 56 34 LDMPFC
3 976 0.017 529 -567 176 52 -56 18 RTPJ
4 832 0.013 -51.7 -63 224  -50 -62 22 LTPJ
5 600 0.012 575 0.8 -19.5 58 0 -20 RATL
6 576 0.012 -19 -554 228 -2 -54 22 PC

A
Q}Q_
‘bQ
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Table 4. ROI results of the contrast-based analysis: the social semantic activations in
narrative reading, sentence reading, and word-list reading.

Social semantic activation in Social semantic activation in Social semantic activation in
narrative reading: HSN - LSN sentence reading: HSS - LSS word-list reading: HSW - LSW
ROI  beta SE t beta SE t beta SE t
LAT  0.907 0.089 10.150™"  0.857 0.126 6.818"""  0.500 0.104 48167
L +
LTP  1.062 0.228 46657 1.112 0.237 4.688"""  0.351 0.204 1.721
J

ok | ok

RAT 0.875 0.113 7.733 0.323 0.115 9t

L

RTP  0.820 0.154 532" 0573 0.169 3.3937  0.239 Q 453
1.032 0.191 5.392""" 0.248‘ 0.,2 1.119

0.794 0.143 5.546™"" 01426 133 3.215™"

0.701 0.128 5.460

sk |

PC 0.870 0.179 4.873
LD 0.607 0.141 4.303
MPF

C

sk |

Note. p <.05; ” p<.01; o p <.001; " t-values survivi oni correction in which the

significance level is divided by the number of ROIs (N =
Condition Labels: HSN = High Social-semantic-zich ative; LSN = Low

Social-semantic-richness Narrative; HSS = emantic-richness Sentence; LSS = Low

Social-semantic-richness Sentence; HSW = ial-semantic-richness Word; LSW = Low

Social-semantic-richness Word.
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Table 5. ROI results of the contrast-based analysis: comparing the social semantic
activations between different linguistic hierarchies.

ufrog

Social semantic activation in narrative reading ) ) o ] ) -
) ) o Social semantic activation in narrative reading vs. ~ Social sethanti
vs. Social semantic activation in sentence 2

Social semantic activation in word reading: Vvs. Socia%-semz
reading: o
(HSN-LSN) - (HSW-LSW) (HSS-LSS) - (
(HSN-LSN) - (HSS-LSS) =
ROI beta SE t beta SE t beta
LATL 0.050 0.119 0.421 0.407 0.116 3.5194" 0.357
LTPJ -0.050 0.212 0.236 0.712 0.259 2. 0.762
RATL 0.174 0.159 1.093 0.552 0.144 9™ 0.378
RTPJ 0.247 0.191 1.295 0.580 0.215 703" 0.334
PC -0.161 0.236 0.684 0.622 185" 0.783
LDMPFC -0.187 0.186 1.009 0.181 R 0.997 0.368

Note. p <.05; ” p<.01; o p <.001; " t-values surviving the Bonferroni €orrecfion in which the
significance level is divided by the number of ROIs (N = 6).

Condition Labels: HSN = High Social-semantic-richness Narrativ =Jow

Social-semantic-richness Narrative; HSS = High Social-se
Social-semantic-richness Sentence; HSW = High Socials i ness Word; LSW = Low

Social-semantic-richness Word.
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Table 6. Results of the parametric modulation analysis that considered all words in
calculating the word-level social-semantic-richness modulator.

Stimuli ROI Word-level Sentence-level Narrative-level

social-semantic-richness social-semantic-richness social-semantic-richness

modulator modulator modulator

beta SE t beta SE t beta SE t

Model 1: high-level social-semantic-richness modulators were orthogonalized with respect to the low-level ones

Word lists 0346 0.07 4.836 3 _ _ _ _
LATL X .
0369 0.15 2.449" _ _ B B
LTPJ
1
0237 0.09 2.609" _ _ 3
RATL
1
0.156 0.13  1.150 B B B A B
RTPJ
6
0210 0.17 1229 B ) B B
PC
1
LDMPF 0327 0.09 3438 _ - B B B
C 5
Unconnecte 0515 0.08 6.046"" 0. 452" B B
LATL
d 5 * 2 *
sentences 0.600 0.14 4.05 1 012 38177 B B
LTPJ
8 1 *
0.413 0260 0.07 3.6427" B B
RATL
3 1 *
0 0284 0.10 2664 B B
RTPJ
7
707 014 488177 0255 012 2104 B B
PC .
5 1
D 0.445 0.10 42507 0332 0.07 44727 B B
C 5 * 4 *
Narratives 0.586 0.06 8755™" 0264 0.09 2809 008 0.05 1.525
LATL
7 * 4 4 5
0.685 0.16 4.096™" 0412 0.14 27877 022 0.09 2.393"
LTPJ
7 * 8 9 6
0.5499 0.08 6.469™" 0244 0.10 2354 0.14 006 2131
RATL
5 * 4 1 6
0.523  0.10 4.812™" 0214 0.12  1.698 023 010 2.406
RTPJ
9 * 6 9 0
. 0.553 0.12  4.452"™  0.058 0.13  0.421 0.13  0.110 1.217
P
4 * 8 3
LDMPF 0350 0.09 3.743™" 0332 0.117 2.836™" 0.02 0.08 0.269
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C

3

+

3

6

Model 2: low-level social-semantic-richness modulators were orthogonalized with respect to the high-level ones

Word lists
LATL 0.346
LTPJ 0.369
RATL 0.237
RTPJ 0.156
PC 0.210
LDMPF
0.327
C
Unconnecte -0.13
LATL
d 3
sentences -0.46
LTPJ
9
-0.19
RATL
6
-0.38
RTPJ
5
PC 0.101
LDMPF -0.34
C 2
Narratives
LATL Qnm
.15
L
0
L 0.073
RTPJ 0.186
PC 0.573
LDMPF -0.33
C 3

0.07

0.25

4.836™"

+

2.449"

2.609"

1.150

1.229

3.438""

0.923

1.792

1.198

1.5

0.104

0.402

0.255

0.535

1.543

1.283

0.232

0.287

0.294

0.204

0.129

-0.00

0.059

-0.06

0.107

0.067

0.024

0.762

0.787

0.859

0.729

0.20

0.24

0.19

0.19

0.18

2

0.13
1

0.02

0.05

0.02

0.03

0.04

3

0.03
5

S

9.504™"

+

4.460™"

+

7.503™"

+

5.170™"

+

4241

+

3.759™"

+

Note.  p<.05;" p<.01;" p<.001; " t-values surviving the Bonferroni correction in which the

significance level is divided by the number of ROIs (N = 6).
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Table 7. Results of the parametric modulation analysis that only considered nouns,
verbs, and adjectives in calculating the word-level social-semantic-richness

modulator.

Stimuli ROI Word-level Sentence-level Narrative-level
social-semantic-richness social-semantic-richness social-semantic-richness
modulator modulator modulator
beta SE t beta SE t beta SE t

Model 1: high-level social-semantic-richness modulators were orthogonalized with respect to the low-level one

Word lists 0.05 4.766™

LATL 0.269
6 * - - - - -

LTPJ 0269 0.113 2.393" _ B B B _
0.07 .

RATL 0.168 ; 2.319 _ _ B _ _
0.10

RTPJ 0.139 ) 1.312 3 _ B _ _

0.12
PC 0.154 1.207

LDMPF 0.07 . 0
0.243 3057 - - -
C 5
Unconnecte 0.06 6.134™ w
\ 5

. LATL 0.411 ; N 2 35747 B B
sentences 4.21 0.13 "
LTPJ 0.486  0.115 418 S 3.0887 _ _
0.06  4.095
RATL 0.328 0.260
7 3 * - - -
0.09 .
RTPJ . 2.867 0.242 2.580 _ _ _
6 4
0.10 4.624™ 0.13 v
PC 0.497 0.400 3.047 _ _ _
8 : 1
D 0.07 4469 0.08 -,
0.352 0.256 3.091 _ _ B
C 9 : 3
Narrétives 0.04 9.048"" 0.08 w, 008 0.05
LATL 0.439 o . 0.274 . 3.427 o S 1.447
0.12  4.407™ 0.13 . 022 0.09 .
LTPJ 0.535 0.296 2.227 2.365
1 : 3 6 6
0.05 7362 0.09 v 0.07
RATL 0.418 N 0.278 1 3.064 0.119 1 1.683
7
0.07 5289 0.12 0.24 0.0 .
RTPJ 0.405 0.216 1.777 2.519
7 : 2 6 8
0.09 4394 0.14
PC 0.400 | . 0.273 1.887 0.113  0.112  1.006
5

LDMPF 0286 0.06 4325 0217 012 1.727 0.05 0.07 0.743
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C

6

+

6

8

9

Model 2: low-level social-semantic-richness modulators were orthogonalized with respect to the high-level ones

Word lists
LATL

LTPJ

RATL

RTPJ

PC

LDMPF

Unconnecte

d

LATL

sentences

LTPJ

RATL

RTPJ

PC

LDMPF

Narratives
LATL

LT

RTPJ

PC

LDMPF
C

0.269

0.269

0.168

0.139

0.154

0.243

-0.01

-0.28

-0.15

-0.21

-0.19

-0.09

0.102

-0.02

0.035

-0.03
5
-0.03
6

0.05

6

0.113

0.07

0.10

0.12

0.07

0.119

0.23

0.113

0.18

0.25

0.22

0.16

0.22

0.28

4
0.21

4.766""

+

2.393"

2.319

1.312

1.207

3.2577"

0.118

1.239

1.372

1.168

0.744

0.053

0.463

0.122

0.158

0.123

0.167

0.228

0.283

0.187

0.204

0.119

0.000

0.051

-0.07

0.109

0.061

3.188™"

5.192"™

4.845™"

+

1.924

0.004

0.687

0.903

0.897

0.20

0.24

0.19

0.19

0.18

4
0.12

0.02

0.05

0.02

0.03

0.04

3

0.03
5

sokk

9.611

4.446™"

+

7.594™"

+

5.206™"

+

4289

+

3.725™"

+

Note.  p<.05; p<.01;" p<.001; " t-values surviving the Bonferroni correction in which the

significance level is divided by the number of ROIs (N = 6).
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